The James Webb Space Telescope, or JWST, has finally unfolded and is in its preparation stages to do what it was always meant to do – capture images of the deep space like never before and send back stunning visuals that will help us delve deeper into the mysteries of our universe, looking back towards the very beginning.
What is the James Webb Space Telescope? – A Brief Description
The James Webb Space Telescope was launched on 25 December 2021, as the successor of the Hubble space telescope, but better and improved in almost every aspect. It will help look deeper into the universe and is expected to show visuals like never before, making it truly one of the greatest revelations of the contemporary world of astrophysics.
Unfolding of the James Webb Space Telescope
First Targets of the James Webb Space Telescope
The star, HD 84406, located in the extended part of the constellation Ursa Major, the Big Bear, which encloses the star pattern the Big Dipper, will be the first target of the telescope and has been chosen as a stable and known catalyst to help with the very meticulous process of aligning all the 18 reflective gold panels correctly. This is delicate and arduous process and will take around a month or two at the very least to reach completion. The chosen star is about 260 million light-years away and is not visible to the naked eye, at least a pair of binoculars is needed.
Must Read- Forming the very first images using the JWST
As the JWST’s science team stated, we’ll start with 18 individual blurry images, but as the segments align at their position, we will have one sharp final image. The NIRCam will keep staring at HD 84406 while Webb’s optic team moves the mirror segments shifting them slowly and one by one, in nanometer-scale steps, steadily creating the intended smooth surface. There is a lot riding on the success of the NIRCam, if it fails, the whole alignment process will take a hit and the Webb telescope may end up failing to function at all, that’s how important the central NIRCam is. The other instruments onboard that were turned on with the telescope reaching its destination, the Lagrange 2 or L2 orbit, are the MIRI (Mid-Infrared Instrument), the Near-Infrared Spectrograph (NIRSpec), and the Fine Guidance Sensor (FGS/NIRiss). Within two to three weeks, the instruments will reach their optimal operational temperatures, as the heaters that kept them warm during the cruise phase have been turned off. The optimal temperatures are expected to reach up to minus 400 degrees Fahrenheit. The NIRCam and other onboard instruments